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In a high-speed subsonic jet impinging on a flat plate, the surface pressure fluctuations 
have a broad spectrum due to the turbulent nature of the high-Reynolds-number jet. 
However, these pressure fluctuations dramatically change their pattern into almost 
periodic waves, if the plate is placed close to the nozzle (x,/d < 7.5). I n  the present 
study extensive measurements of the near-field pressure provide solid support for the 
hypothesis that  a feedback mechanism is responsible for the sudden change observed 
in the pressure fluctuations a t  the onset of resonance. The feedback loop consists of 
two elements: the downstream-convected coherent structures and upstream-propa- 
gating pressure waves generated by the impingement of the coherent structures on the 
plate. The upstream-propagating waves and the coherent structures are phase-locked 
at  the nozzle exit. The upstream-propagating waves excite the thin shear layer near 
the nozzle lip and produce periodic coherent structures. The periodis determined by the 
convection speed of the coherent structures, the speed of the upstream-propagating 
waves as well as the distance between the nozzle and the plate. Aninstabilityprocess, 
herein referred to as the ' collective interaction', was found to  be critical in closing the 
feedback loop near the nozzle lip. 

1. Introduction 
The impinging jet can be viewed as a synthesis of a number of diverse flow modules, 

namely a free turbulent jet, stretched vortices in a curved shear layer, a stagnation 
flow, and a wall jet, with each portion of the flow having its own distinctive charac- 
teristics. These features have attracted much fundamental research into the impinging- 
jet configuration, The impinging jet is also important in many technological develop- 
ments. For example, on some STOL aircraft the high-speed exhaust from the jet engine 
is deflected by direct impingement on the flaps to create extra lift during take-off. 
Fatigue due to excessive dynamic loading on the flaps and high levels of noise radia- 
tion are among problems encountered in such designs. When the jet is operated at 
high subsonic speeds ( M  > 0.7) and the nozzle-to-plate distance is of the order of the 
potential core length or less (z,/d c 7-5) ,  the fluctuating pressure becomes an almost- 
periodic wave-form (see figure 2 below). The spectra normalized to their r.m.s. pressure 
fluctuations (figure 3) show that the energy increases in a relatively narrow frequency 
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band, the resonance frequency, while i t  diminishes a t  all other frequencies. The 
dynamic loading on the surface exhibits a much stronger spatial coherence and is as 
much as 50% higher than the loading in a non-resonant jet (Ho & Nosseir 1980). 
Therefore the resonance not only poses an interesting topic for basic research but it also 
has important practical applications. 

An extensive study of the impinging jet was carried out by Donaldson, Snedeker & 
Margolis (1971) in order to understand the heat transfer near the stagnation region. 
Velocity profiles and pressure distributions were carefully documented for a wide 
range of parametric variations. Gutmark, Wolfshtein & Wygnanski ( 1978) investigated 
a plane jet impinging on a flat plate located 100 slot-widths downstream. They found 
that the flow properties on the centre-plane of the jet are essentially the same as in a 
free jet except in a short region (about 20 yo of the distance between the slot and the 
plate) in front of the solid boundary. Their spectral measurements detected a frequency 
range in which turbulent energy is neither augmented nor attenuated. At higher 
frequencies the turbulence is attenuated owing to  viscous dissipation, while a t  lower 
frequencies the turbulence is augmented presumably because of vortex stretching as 
the fluid approaches the plate. Foss & Kleis (1976) studied shallow-angle ( <  12’) 
impingement. Their measurements suggest that a finite-length stagnation line, 
instead of a stagnation point, exists on the plate. The surface pressure fluctuations on 
curved plates impinged upon by an axisymmetric jet were measured by Ho, Plocher & 
Leve (1977). The general characteristics of the fluctuating pressure, such as the 
normalized maximum fluctuation level, the peak frequency and the roll-off exponent 
of the spectra, do not change with the geometry of the plate. Only the streamwise 
distribution of the r.m.s. pressure fluctuations is affected by the curvature of the solid 
boundary. 

It is known that a broad class of flows exhibit similar self-sustained oscillations 
(Rockwell & Naudascher 1979). The edgetone, flow over a cavity, and an impinging 
jet all belong to the same category. A common characteristic of these flows is a free 
shear flow impinging on a solid boundary. A pressure disturbance produced by 
the impinging flow structures is fed back to force the inherently unstable free shear 
layer. This feedback loop generates the self-sustained oscillation and the screech 
tone. For the edgetone problem, Powell (1 961) modelled the feedback from the edge 
as a dipole source and established a value of unity for the ‘gain around the circuit’ 
as the criterion for self-sustained oscillation. Many features of the edgetone pheno- 
menon can be explained by his formulation. In  the case of an impinging jet, Wagner 
(1971) reported that the self-sustained oscillations occur a t  M > 0-6 and xo/d < 6. 
Visualization by schlieren photography was used to examine the flow field. Based 
upon the standing-ware pattern inside the jet, he suggested that a feedback of pres- 
sure waves through the jet core was responsible for the resonance. Neuwerth (1973) 
obtained the resonant frequency by measuring the far-field noise. The frequencies vary 
with distance from the solid boundary and form several stages, which is a characteristic 
feature in many flows with self-sustained oscillations. Neuwerth, following the same 
argument as Wagner based his model on acoustic feedback from within the jet core. 
Unfortunately no reliable measurements can be made inside a high-speed jet. The 
present study indicates that the resonance phenomenon can be understood from near- 
field measurements taken outside the jet column. Furthermore, Nosseir (1979) used 
a theoretical approach similar to R,ihner’s ( I  957) to calculate the induced transverse 
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velocity by forcing in a shear layer. The results show that a thin shear layer is more 
susceptible to upstream acoustic forcing from outside the jet than from within. 

The movies taken by Neuwerth (1973) demonstrated the importance of the coherent 
structures. An understanding of the role of the coherent structures in an impinging 
shear layer is necessaryfor studying the resonant jet. The idea of large-scale structures 
in a turbulent flow was first introduced by Townsend (1956), but extensive study on 
this subject did not start until Brown & Roshko (1971) reported their work. They 
recognized that the structures not only have scales comparable to the thickness of 
the shear layer but also are coherent in the lateral direction. The technique ofcondi- 
tional sampling reported by Kovasznay, Kibens & Blackwelder (1970) facilitated the 
experimental study of coherent structures in various shear flows. In  a circular jet, 
Lau, Fisher & Fuchs (1972) found that the coherent structures travel a t  a speed equal 
to 60 % of the jet exit velocity. They also measured the phase relationship between the 
pressure fluctuations and the velocity components. The results agree with a simple 
model using a vortex array to represent the shear layer. Browand & Laufer (1975) 
reported that the Strouhal number of the passing structures at  the end of the potential 
core is close to 0.5 and is independent of the Reynolds number. 

The present study of the resonant impinging jet provides a solid experimental 
support for the feedback mechanism which has been proposed by theoreticians (for 
example, Powell 1961; Tam & Block 1978) in similar flows with self-sustained oscil- 
lations. First, two branches of the feedback loop, the downstream-convected coherent 
structures and the upstream-propagating waves, are established. The characteristics 
of the upstream-propagation waves are determined. Then, the phase relationship 
between the coherent structures and the upstream-propagation waves at  the plate and 
the nozzle exit is identified. Finally, a phenomenon named ‘collective interaction ’ is 
observed and shown to be an essential mechanism for self-sustained oscillations. 

It is worth mentioning here that near-field microphones were used to measure the 
pressure induced by the passing turbulent eddies. In  order to follow more closely the 
measured quantity, i.e. the induced pressure, the term ‘downstream-travelling waves’ 
is used to represent the convected turbulent eddies throughout the text. 

2. Facility and data processing 
2. 1. Facility 

The air jet (figure 1) consisted of a stagnation chamber and a 2.54 cm diameter nozzle 
with a contraction ratio of 289: 1. The turbulence level in the stagnation chamber was 
measured and found to be 0.4 %. The stagnation pressure was regulated by a low-noise 
control valve. The variation of the stagnation pressure during the measurements was 
maintained to within 2 yo of the mean gauge pressure. Five large storage tanks allow 
the jet to be operated for a time from 3 min to 10 min, depending on the Mach number 
and the size of nozzle. The jet exit Mach number was restricted to the subsonic range 
0.3 to 0.9 in the present experiment. The jet is located in an anechoic chamber with 
dimensions 4.78m wide by 6.20m long by 3.63m high. The low-frequency cut- 
off of the chamber is 150 Hz. 

A flat steel plate (76.20 x 76.20 x 0.64 cm) was used to provide a large surface for the 
impinging jet. The plate was mounted on a traverse mechanism with 4 degrees of 
freedom with the streamwise and transverse movements remotely controlled. The 
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FIGURE 1. Schematic diagram of the impinging jet. 

plate and its supporting mechanism were examined for structural vibrations during jet 
operation. The vibrations of the plate were measured with an accelerometer (Bruel and 
Kjaer type 4324). At M = 0.9 the amplitude of vibrations was only 2.84 x 

The surface pressure fluctuations were measured by 0.32 cm diameter Kulite 
XTEL- 1- 190-25 piezoresistive pressure transducers with natural frequency in excess 
of 100 kHz. There were 46 transducer sites on the plate and the unused sites were filled 
by flush-mounted plugs. Measurements of pressure fluctuations in the region between 
the nozzle and the plate were made in the hydrodynamic near field of the jet, using 
0.32 cm (&inch) diameter Bruel and Kjaer type 4138 condenser microphones with 
frequency response from 7 Hz to 140 kHz. 

The cylindrical co-ordinate system is defined in figure 1. The streamwise direction is 
x, the radial direction and the azimuthal direction are r and respectively. The 
diameter of the jet d and the acoustic wavelength a t  the resonant frequency A, = a/f ,  
(a  is the ambient speed of sound) are used as length scales for normalization. The 
subscript 0 denotes the co-ordinates on the plate. Functions with Arabic numerals as 
subscripts (for example correlation function R2, 3) represent measurements associated 
with surface pressure transducers. Functions with Roman numerals as subscripts (for 
example, BII, 111) represent data associated with near-field microphones. 

cm. 

2.2. Data processing 
All the signal outputs were recorded on a Hewlett-Packard 14-channel tape recorder 
(Type 3955A). For FM mode recording, the frequency response is from d.c. to 20 kHz. 
For direct mode recording, the frequency band is from 300 Hz to 300 kHz. The analog 
data are digitized and processed by a PDP 11/55 minicomputer. The fast Fourier 
transform (FFT) technique is used for all the spectral analysis. 

When the jet is in resonance the pressure signals have the form of slightly distorted 
sine waves (figure 2). The spectra then are dominated by a peak a t  the resonant 
frequency, while the correlation functions would show a sinusoidal behaviour with no 
distinguishable optimum peak. A data-processing method called pre-whitening is 
quite useful for analysing small random signals superimposed on a high-amplitude 
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FIGURE 2. Signals of surface pressure fluctuations (z,/d = 4, r,/d = 0). The case M = 0.5 is 
an example of non-resonance; the case M = 0.9 is an example of resonance. 

St = f d / U  

FIGURE 3. Normalized power spectra of surface pressure fluctuations (z,,/d = 4, r , /d  = 1.5). 
The curve M = 0.8 corresponds to resonance. 

pure tone. A conventional pre-whitening technique (Williams & Purdy 1970) separates 
the random signals from the pure tone by subtracting an in-phase sine wave from the 
original signal by analog methods. A pre-whitening technique was developed (Nosseir 
1979) using digital methods, and was found to be much simpler. The procedure to 
ohtnin the pre-whitened cross-correlation fi~nct~ion of two signnls was t,o replace the 
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high resonant peak in the cross-spectrum with the averaged value of the two neigh- 
bowing frequency components, and then to inverse-Fourier transform the resulting 
spectrum. After removing the two peaks a t  the resonant frequency and its first 
harmonic, the pre-whitened correlation does exhibit a distinctive optimum peak. The 
delay time of this peak will be used to  calculate a broad-bandeddy convection velocity. 

3. Experimental results 
3.1. The two branches of the feedback loop 

It has been suggested for some time (Powell 1961) that  two wave trains, one travelling 
downstream and one travelling upstream, form a feedback loop and should be phase- 
locked a t  the nozzle lip in order to  close the loop. Although knowledge of the charac- 
teristics of the upstream-propagating waves is necessary in clarifying important links 
in the feedback loop, most experiments have only studied the downstream-travelling 
waves in detail. The first step in the present experiment is to establish the existence 
of the two branches of the feedback loop. 

The pre-whitening technique can be used to identify the directions of wave propa- 
gation. The correlation between two microphones I and I1 in the near field of the jet is 
shown in figure 4( a ) .  The correlation R,,,, (7) is a sine wave as one would expect from 
two resonant signals and does not provide any clues about the propagation directions 
of the waves. However, two peaks a t  positive and negative time delays (figure 4 b )  of 
the pre-whitened correlation 8,,, (7) do suggest the possibility of two waves propa- 
gating in opposite directions. When the two microphones were moved farther away 
from the jet axis ( r / A a  > 1.0), the correlation showed only the negative time delay 
peak (figure 5 ) ,  indicating the dominance of the upstream-travelling waves there. These 
promising results provide opportunities to investigate the feedback loop through near- 
field pressure measurements. 

( a )  Characteristics ofthe upstream-propagating waves. The pressure signals, from which 
figure 5 was produced, came from microphones placed within one acoustic wavelength 
A, of the jet axis, which was still inside the hydrodynamic near field. Data indicates 
the dominance of the upstream-travelling waves in this region. I n  an effort to under- 
stand the characteristics of the upstream-propagating waves, the phase speed and the 
direction of wavefront propagation were examined through two-point statistics. From 
two microphones placed a t  fixed points in the near field one can determine an apparent 
phase speed either from the correlation function or from the cross-spectrum. I n  order 
to obtain the true phase speed, more information about the wavefront had to be 
obtained. Hence measurements taken at more than two points were necessary. 

The wavefront was mapped from a pair of microphones; one is fixed near the nozzle 
lip (at r/d = 0.51) and the other placed at  several different stations in a plane perpen- 
dicular to the jet axis at x = 0. The phase differences between the two signals a t  the 
resonance frequency, v ( f r ) ,  are obtained from the phase spectra and are plotted in 
figure 6 for different probe separations. Away from the jet axis (r/Aa > 1.0)) the phase 
difference increases almost linearly with the radial distance. In  this region, the up- 
stream-travelling waves appear to be dominant from the pre-whitened correlation 
curve (figure 5 ) .  Therefore, the upstream-travelling waves have almost conical wave 
fronts for r /A ,  > 1.0. The direction of propagation of the wavefront is determined 
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FIGURE 4. Cross-correlation of near-field pressure signals, ( a )  before prewhitening, (b)  after pre- 
whitening ( M  = 0.9, x, /d  = 5 ) .  For microphone I, r / d  = 0.10, r /d  = 0.52; for microphone 11, 
x/d = 1.95, r /d  = 0.93. 

FIGURE 5 .  Cross-correlation of near-field pressure signals away from the jet axis ( M  = 0.9, 
Told = 5 ) .  For microphone I, a / d  = 0.10, r / d  = 2.7;  for microphone 11, z /d  = 1.02, r / d  = 2.7. 

from the rate of change of phase angle with respect to the radial distance according to 
the following relation: 

where 6, is the angle between the jet axis and the unit vector perpendicular to  the 
wavefront. For a nearly conical wavefront, an averaged value of 8, is 
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FIGURE 6. Variation of the phase angle at the resonant frequency near the nozzle exit ( M  = 0.9, 
r,/d = 5 ) .  For microphone I, xld = 0.1, r l d  = 0.51 ; for microphone 11, xld = 0.1. 

For the nozzle-to-plate distance, xo/d = 5 ,  the values of 8, is 32.5”. The phase angle 
function (figure 6) has a small bulge near r /h,  = 0.7. The accuracy of measurement 
of the phase angle is poor near that  region. The authors believe the phase angle 
distribution should follow the dashed line on the diagram. 

The apparent phase velocity was measured using two microphones separated in the 
streamwise direction (see figure 7 b ) .  The upstream microphone was placed a t  several 
different distances in the radial direction. The phase angle vIII,II ( f )  was calculated 
and three samples of the measurements are plotted in figure 7u.  Since the output of 
microphone I11 was delayed, the positive slope indicates upstream-propagating waves. 
The phase angle increases linearly with the frequency, so the phase velocity is constant 
a t  a11 frequencies and the waves are non-dispersive. One also notices that deviations of 
vIII, II ( f )  around its mean decrease as rII/d increases due to the decay of the contami- 
nation from the downstream-travelling waves. The apparent phase velocity C6( f) is 

where ‘€,III,II is the vector joining microphones I11 and 11. Since ~111,11 does not 
necessarily coincide with the direction of wave propagation, the true phase velocity 
C2(f 1 is 

where 8, is the unit vector making an  angle 0, with the jet axis. Equation (4) is used to  
calculate the speed of the upstream-travelling wave. The magnitude of C,(f)  normal- 
ized to the ambient sonic speed a for different r I I / d  is plotted in figure 7 ( 6 ) .  The data 
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FIGURE 7. (a) Phase angle of near-field pressure signals near the nozzle ( M  = 0.9, q,/d = 5). 
( b )  Comparison between measured upstream-propagating wave velocity in the 8, direction and 
plane acoustic waves ( M  = 0.9, xo/d = 5, 0, = 35'). 

show, not surprisingly, that the waves travel a t  speeds close to the ambient speed of 
sound. A constant value of 0, = 32.5" was used in calculating C,( f )  in figure 7 ( b ) .  
However, figure 6 shows that the slope is not really constant but increases slight,ly 
with increasing r /h ,  for r /h ,  > 1.0. This results in smalier values of C , ( f ) / a ,  for 
larger r I I / d ,  which indeed is the trend one observes in figure 7 ( b ) .  

The two microphones separated in the streamwise direction can aIso be used to 
determine the direction of the wavefront propagation. \Then microphone TI was 
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FIGURE 8. Measured angle between the upstream-propagating waves and the 
jet axis for different plate locations. 0,  M = 0.8; 0, M = 0.9. 

FIGURE 9. Propagation velocities of the downstream and the upstream waves: broadband 
velocity 8,, c, and phase velocity at the resonant frequency C,(fr), C,(f,.). The straight line 
at ??JU = 0.62 follows Neuwerth (1973). 

moved in the radial direction, cross-correlations were calculated for each separation 
distance. The curve connecting the peaks of these correlations had a maximum a t  
rlI/d = 3.5 (Nosseir 1979). The relative position between the two inicrophones a t  this 
maximum gives the direction of wavefront propagation. This direction agrees with 
that determined from the phase measurements of figure 6. The direction of wavefront 
propagation varies with the positions of the plate (figure 8). The refraction effect by 
the wall jet on the upstream-travelling waves near the plate can account for the angle 
of propagation and its variation with nozzle-to-pla te distance. The average wall jet 



Dynamics of a n  im,pinging jet. Part 1 129 

speed is about 50 yo of the jet exit speed. Since the upstream-travelling wave propagates 
a t  sonic speed, the resultant angle of the wavefront is of the order of 30". The average 
wall jet speed decreases with increasing nozzle-to-plate distance; so does the angle of 
propagation. The above results indicate that the upstream-propagating waves are 
travelling at  sonic speed and inclined about 30" to the jet axis. The measured phase 
speeds in the direction 8, calculated either from the phase differences or from the 
cross-correlation are sunimarized in figure 9. 

( b )  Characteristics of the dou;nstream-travellin~ waves. The wave speed oE the down- 
stream-travelling waves can be measured either from pre-whitened correlations el, or 
from the phase difference at  a certain frequency between two probes C,(f). The phase 
speeds a t  the resonance frequency C,(f,) and the values of C, are normalized to  the jet 
esit speed U .  The normalized values were found to be 0.62 (figure O ) ,  which have been 
identified as the convection speed of the large coherent structures in a low-speed jet 
through hot-wire measurements (Lau et al. 1972) and in high-speed jet using frame-by- 
frame analysis of movies (Neuwerth 1973). The phase speed at  the resonance frequency 
C,(f,) being the same as the convection speed of the coherent structures indicates that 
the large coherent structures play the main role in the feedback mechanism. 

(c) A simple model of the near;fieldpressure waves. If the autocorrelation of a near-field 
pressure waves is calculated, two extra peaks (denoted [3] and [4j in figure 10) appear 
a t  long time delays; they are symmetric with respect to zero time delay. These extra 
peaks also appear in the cross-correlations, but they are not symmetric with respect 
to zero time delay (figure 11). A very simple model proposed here satisfactorily explains 
these peaks. 

The model (see appendix) assumes that the pressure at  any point in the near field is 
a superposition of two plane waves: a wave travelling downstream at  C, = 0.6277 and 
a wave propagating upstream with the speed of sound in a direction making an angle 0, 
t o  the jet axis. Since the upstream-propagating waves are generated by the impinge- 
ment of the coherent structures, the phase difference between the two waves on the 
plate is zero. The calculated cross-correlation R,,?(r) of the fluctuating pressures at two 
locations, xi and xj, would exhibit four peaks with the following time delays: 

where F,,, and gF,? are the vectors connecting .r? and xl to an apparent sound source s 
on the plate in a region where the large-scale structures presumably impinge on the 
plate (Ho & Nosseir 1980). The interpretation of these time delays is as follows: 7r1J 

is the time it takes the waves to travel downstream from x, to IC,. T"] is the time needed 
for the upstream waves to travel from xl to x, and should therefore appear as a negative 
time delay in Ii,,](7). 7L31 i4 the time required for the waves to travel downstream from 
xl to the apparent source on the plate plus the time for the waves generated by the 
impingement to travel from the plate to x, . 7L41 is the t ime for the waves to travel from 
x, to the plate a t  a speed of C, plus the time to travel from the apparent source to x, 
wiih a. speed G,. 
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FIGURE 10. Autocorrelations of near-field pressure signals ( M  = 0.8, z,/d = 7) .  For micro- 
phone I, x/d = 1.09, r / d  = 1.13; for 11, z /d  = 1.97, r / d  = 1.13; foi 111, x/d = 3.25, r / d  = 1.31. 

I \ I " 'i I 

FIGURE 11. Correlations of near-field pressure signals; ( M  = 0.8, q,/d = 5.5, r,/d = 1) 
indices refer t o  the sketch in figure 10. 
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FIGURE 12. Time delays of peaks (3) and (4) in the correlations between near-field micro- 

phones separated by Ax = zj-zd, n, measured; --, equation (5), M = 0.8. 

For the case of xi = zj, the autocorrelation function Ri,J7) has peaks with time 
delays given by 

(Ga) +'I == 7[21 = 0 

Therefore, the extra peaks in the autocorrelation (figure 9) represent the time for 
waves to travel downstream from xi to the plate and to return back from the plate 

The autocorrelation and cross-correlation of the signals from several pressure 
transducers placed along the streamwise direction are plotted in figure 11 .  The vertical 
spacing of the correlation curves in the diagram are scaled to the streamwise distances 
between each microphone. Lines connecting all the peaks form a W-shaped curve 
which indicates agreement between the model's predictions and the experimental 
values. A more precise comparison is made in figure 12. The calculated values of 7131 

and TI*] are plotted against the measured data. The agreement is excellent. The success 
of this simple model can be attributed to the following fact. The correlation peaks 
appear a t  relatively long time delays and have long temporal coherence; therefore, 
they are mostly determined by pressure waves generated by the coherent structures 
which have low frequencies and long wavelengths. The complicated high-frequency 
small-scale turbulence has no major contributions to these peaks. 

to  xi. 
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3.2. The phase lock 

A wave travelling downstream and a wave propagating upstream in the near field 
have been detected. The mechanism of interaction between these waves a t  the nozzle 
exit remains to be clarified. The mechanism, to be described, serves t o  close the feed- 
back loop for the observed self-sustained oscillations. Since the thin shear layer at the 
nozzle exit is intrinsically unstable, it is suggested that these self-excited oscillations 
are forced by the upstream-propagating waves with a sufficiently large amplitude that 
a phase lock is established a t  a fixed resonant frequency or frequencies. Experimental 
results are prescribed in this section to verify this contention. 

The variations of the phase difference at  the resonant frequency, v(f , ) ,  along the jet 
axis for both waves are presented in figure 13. The v(f , )  variations from the nozzle lip 
to the plate along the downstream-travelling waves are presented by the upper curve. 
These phase angles are measured from the cross-spectra by a series of transducers 
placed along the outer edge of the shear layer. The lower curve represents v(f,)  
variations of the upstream-propagating waves from the plate back to the nozzle exit 
and were measured with microphones placed farther away from the shear layer 
( r / d  > 2.5). The reference point on the plate is a t  r,/d = 1. This is a position in the 
region where large-scale structures were observed to impinge on the plate (Neuwerth 
1973). 

The slope of the upper curve in figure 13 is proportional to the inverse of the con- 
vection speed of the coherent structures. The slope of the lower curve represents the 
inverse of the sonic speed with a proportionality constant. At any streamwise position 
x/d, the difference between the two curves represents the phase difference between the 
two waves. The most important observation is that the phase difference a t  the nozzle 
exit (x/d = 0) is an integer multiple of 277. This result has been confirmed for different 
nozzle-to-plate distances (Nosseir 1979). Therefore, the downstream-travelling waves 
must be locked in phase with the upstream-propagating waves a t  the nozzle exit. 

When the impinging jet is operated in the resonant condition the resonant Strouhal 
number (st), = f ,d /U varies with plate location for a fixed Mach number (figure 14n).  
The resonant Strouhal number decreases withincreasing xo/d until it reaches a minimum 
value of 0.3. For farther separation of the plate, the Strouhal number changes abruptly 
to a higher value, then decreases again with increasing nozzle-to-plate distances and 
the cycle repeats. These frequency stages are typical of flows with self-sustained 
oscillations such as flow over cavities and edgetones (Rockwell & Naudascher 1979). 

The presence of the frequency stages becomes clear if one stipulates that resonance 
requires an integer number of waves N to exist in the feedback loop. By definition 

where h,(f,) = Cl(f,)/fp and h,(f,) = [C,(f,)/cos B,]/f, are the wavelengths of the 
downstream- and the upstream-travelling waves respectively. Equation (7 a) charac- 
terizes the most fundamental feature of flows with a feedback loop. 

The measured resonant frequencies are plotted according to equation (7a)  in 
figure 14 (b ) .  In  each of the frequency stages, the number of waves, N ,  remains constant. 
As the nozzle-to-plate distance increases, the wavelength of both waves increases to 
preserve the phase lock at the nozzle exit. This results in a decrease in the resonant 
frequency. As the nozzle-to-plate distance is increased, the resonant frequency is 
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FIGURE 13. Phase-difference variations of the two waves at the resonant frequency ( M  = 0.8, 
Told = 4, f, = 5.5 kHz, T,/d = 1). The downward-sloping line has a slope cc (large-scale eddy 
convection velocity)-' ; the upward-sloping line has slope N (speed of sound)-'. 
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FIGURE 14. ( a )  Variations of the non-dimensional resonant frequency parameter f r d /  U with 
plate locations, M = 0.9. (b )  Resonant frequency stages, N = xo/h,+xO/h2,  0, measured; 
0, CahilittF'd from eqiiation (7 n )  with , f T  meamired from a sirrfact pwsswc transducer and 
c,/u = 0.62. 
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rc, I d  
Frequency ?--------'-----7 

stage From 
N equation (7  b)  Measured 

1 1.25 - 
2 2.50 2.40 
3 3.74 3.75 
4 4.99 4.8-5.0 
5 6.24 6.0-6.5 
6 7-49 7.50 

TABLE 1. Relative distance between nozzle exit and plate at frequency discontinuities. 
( M  = 0.9, ea = 250, K ,  = 0.62.) 
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(2.4 s) cross-spectrum. ( b )  and (c) Two short-time-averaged (O.OG1 s) cross-spectra. 
FIGURE 15. The frequency jump phenomenon ( M  = 0-9, q,/d = 2.35). ( a )  Long-time-averaged 
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decreased until a minimum value is attained. A further increase in the nozzle-to-plate 
distance results in a frequency jump to a higher value and the number of waves in the 
feedback loop is increased by one. 

The lower limit of the resonant frequency at the discontinuity between frequency 
stages was found to be St 2: 0.33. Significantly, this value corresponds closely to  the 
most unstable mode of a free jet column measured by Crow & Champagne (1971) for 
an incompressible flow condition. The lower limit of the resonant frequency and the 
limitation t o  integer wavenumbers in the feedback loop (equation (7a))  can be used 
to predict the positions of the plate a t  which discontinuities between frequency stages 
occur. Equation (7 a )  is rewritten in the form 

xo=- 1 N 
d (fit),  1/K, + M cos 0,’ 

where (st), = (St),i, = 0.33 and Kv = C, /U .  A comparison between the locations of 
the plate a t  which frequency discontinuities occur as predicted by equation (7a )  and 
as measured is presented in table 1. The predicted values in the second column are in 
good agreement with the measured values in the third column. 

Hysteresis is also observed. For example, there are two resonant frequencies a t  
xo/d = 2.35 (figure 15). The long-time-averaged cross-spectrum between two surface 
pressure signals shows two peaks. When the spectrum of the same signal is calculated 
over short time intervals, often only a single peak appears. It indicates that the flow 
switches from one resonant mode to another mode intermittently a t  the frequency 
discontinuities. 

3.3. The collective interaction 
It has been proved that the upstream-propagating waves force the flow near the nozzle 
exit. It is then logical to  examine the response of the intrinsically unstable shear layer 
to such a forcing. The raw pressure signal very close to the nozzle (z /d  = 0.13) clearly 
shows (figure 16) high-frequency fluctuations superimposed on low ones. The spectrum 
of the signal is plotted in figure 17. A broadband high-frequency peak appears besides 
the dominant resonant frequency peak. The high-frequencies have been measured for 
different Mach numbers and the Strouhal numbers found to be in the range 3 < St < 5 
and to  vary with the square root of the Mach number (figure 18). This result agrees 
with the theoretical prediction of initial instability frequencies (Michalke 197 1). Hence, 
the high-frequency signals are the instability waves. The init,ial instability frequencies 
are measured for both the free jet and the impinging jet (figure 18). The presence of a 
plate does not change the initial instability frequencies. The resonant frequencies for 
M = 0.8 and for Jl = 0.9 are also plotted in the same figure. The vertical bars do not 
represent the range of accuracy of the measurements, but indicate the frequency 
variations with different plate locations. The resonant frequencies are more than one 
order of magnitude lower than the instability frequencies. 

Farther downstream (x/d = 1.31), the pressure signal contains predominantly low- 
frequency fluctuations. I n  a very short distance, the shear flow changes its charac- 
teristic frequency from the high initial instability frequency to the low resonant 
frequency, which is about ten times lower than the instability frequency. A pairing 
process, first observed by Winant & Browand (1974) in a two-dimensional shear layer, 
is not a likely mechanism to produce this frequency reduction: it would take three to 
four pairings to decrease the frequenry by :I factor of 10, requiring n long distance not. 
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h 

21 (ii) x /d  = 1.3 1, r/d = 1 .O 
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FIGURE 16. Near-field pressure signals in an impinging jet operated in resonance ( M  = 0.9, 
'cold = 4.6). (i) x/d = 0.13, r /d  = 0.5. (ii) x / d  = 1.31, r l d  = 1.0. 
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FIGURE 17.  Near-field power spectrum for a microphone at x / d  = 0.13 
and r / d  = 0.5 ( M  = 0.9, 'cold = 4.5). 

available in this case. I n  addition, a phase lock between the instability waves and the 
upstream-propagating waves is not expected because their frequencies are as much as 
one order of magnitude apart. Therefore, one must search for a new mechanism 
governing the instability process near the nozzle of a resonant impinging jet. 

I n  a forced plane shear layer, Ho & Huang (1978, 1980) were able to cause a 
specific number of vortices to merge together by forcing the layer with a certain 
subharmonic of the self-excited instability frequency. Their work included the case 
of the forcing frequency being one order of magnitude lower than the initial instability 
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FIGURE 18. Instability and resonant Strouhal numbers for free and impinging jets. 0, 
free jet; 0 ,  (St),, impinging jet; 0, (St),, impinging jet. The straight line has slope i. 

frequency. This is similar to the situation in the present experiment. A photograph 
of the forced plane shear layer is shown in figure 19. The flow is from left to right with 
the higher-velocity flow a t  the lower side. The low-frequency forcing forms a wavy 
shear layer and displaces the vortices from their original positions. This causes a 
redistribution of the vortices owing to their induced field (Batchelor 1967). In one part 
of a period of the wavy shear layer the vortices are drawn together, develop a stronger 
induced field that causes their rotation around each other and their coalescence into a 
large vortex. In  the other part they are drawn apart, stretch and do not interact. The 
phenomenon of multiple merging of coherent structures is termed collective interaction; 
it is the mechanism governing the stability process near the nozzle of the impinging 
jet. Two of the characteristic features associated with the collective interaction are a 
sharp drop in passage frequency and a relatively large shear-layer growth. The idea 
of the collective interaction could explain the relative large growth rate of a forced 
two-dimensional shear layer observed by Wygnanski, Oster & Fiedler (1979). 

The schematic drawing in figure 20 describes the collectire interaction in an impinging 
jet. The shear layer emerging from the nozzle is flapping due to the periodic forcing froin 
the upstream-travelling waves. The shear layer goes through cycles of divergence 
(t  = 0, T,, 2T,, ...) and convergence ( t  = T , / 2 ,  3T, /2 ,  ...), where 5’: is the period of the 
resonant frequency. At t = 0, the small vortices rotate around each other under their 
inthiced field and  coalesce into a large vortical structiire At t = T / 2 ,  the shear Ia~7er 
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FIGURE 19. Collective interaction in a two-dimensional free shear layer, flow from left to  right, 
forcing frequency natural initial instability frequency (Ho & Huang 1978). 

changesits orientation and the lower vorticesmove away from the upper vortices due to 
the mean shear. Therefore, this portion of the shear layer tends to stretch. The 
vortices are stable, and do not coalesce. These sketches show the evolution of the 
merging of multiple vortices under forcing. Apparently the passage frequency can 
drop by one order of magnitude within a short distance. Nosseir & Ho (1980) separated 
portions of the measured pressure fluctuations induced by the passage of the large 
coherent vortices and those portions induced by the passage of the ‘valley’ between 
two vortices. Their spectral analysis of the separated portions, using the maximum 
entropy method, confirmed the multiple merging of small-scale vortices into a large 
coherent vortex in agreement with the collective interaction concept described 
earlier. It should be pointed out here that the collective interaction is a nonlinear 
secondary instability. In the plane shear-layer experiment (Ho & Huang 1978, 1980), 
high-amplitude forcing is necessary if the forcing frequency is one order of magnitude 
lower than the initial instability frequency. In the impinging jet, the collective 
interaction becomes predominant at high Mach numbers, since the amplitude of the 
upstream acoustic forcing waves increases rapidly with the Mach number. The 
reason for requiring high-amplitude forcing is the very slow growth rate of the 
low-frequency waves in the thin shear layer according to the linear theory (Michalke 
1971). Only high-amplitude nonlinear forcing can make this phenomenon occur in 
a short distance from the nozzle. Owing to  the collective interaction, the high- 
frequency initial instability waves do not play an important role in the flow with self- 
sustained oscillations. 
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FIGURE 20. Collective interaction. 

The low-frequency long waves travelling downstream and upstream are much more 
important. 

After the collective interaction the passage frequency remains constant downstream 
to the plate. It implies that the coherent structures do not merge again. In  the experi- 
ment by Ho & Huang (1978, 1980), a high-amplitude subharmonic is needed for the 
coherent structures to  merge. Along distance and a thick shear layer are required for 
the growth of the subharmonic. In an impinging jet neither of these requirements are 
met for the subharmonics. Hence, no further merging appears after the collective 
interaction, and the passage frequency of the coherent structures after the collective 
interaction becomes the dominant resonant frequency. 

4. Conclusions 
The present study has established experimental evidence of a feedback mechanism 

and an instability process, the collective interaction, essential to the onset of resonance 
in an impinging jet. The feedback loop (figure 21) is formed by the downstream- 
convected large coherent structures and by upstream-propagating pressure waves 
generated by the impingement of these structures on the plate. The upstream- 
propagating waves travel with the speed of sound in the quiescent medium. These 
waves force in-phase oscillations of the thin shear layer near tlhe nozzle exit. The shear 
layer. oscillating a t  a frequency much lower than its intrinsic. most iinstable frequency, 
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FIGURE 21. Schematic diagram of the feedback loop in an impinging jet. 

undergoes a collective interaction in which many small vortices merge together to form 
a large coherent structure. The collective interaction, therefore, generates large 
coherent structures a t  intervals phase-lockedwith the external forcing of the upstream- 
propagating waves causing the resonance. The sharp drop in the passage frequency of 
the vortices concurrent with the rapid growth of the shear layer within a short dis- 
tance from the nozzle, by the collective interaction, niakes the resonance independent 
of the initial conditions of the jet. 
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Appendix 
The following is a simple mathematical model to explain the characteristics of 

measured correlation functions in the impinging jet with two counter-propagating 
waves. The pressure at  any point with a position vector E, in the near field is the super- 
position of two waves and takes the form 

~ ( 4 5 )  = u(E,)expi(o,t-K,x+v,)+b(E,)expi(w,t+K,.5), (8) 
where the two waves are assumed to  be monochromatic plane waves having the same 
frequency fT which is the resonant frequency. The wavenumbers, K, and K,, are 
different, however, because of different phase velocities. The first term in (8) represents 
a downstream-travelling pressure wave due to the large-scale structures and having 
a velocity C, = w r / J  K, 1 .  The second term is an upstream wave travelling in 0, direction 
with velocity 

c --e,. % 
- lKzl 

The phase difference between the two waves a t  any location is 

where the constant phase shift v, can be evaluated by applying the boundary condition 
a,t the plate. Since the upstream-propagating wave is assumed to be generated by the 

v = -K~x-K~.E,+v, ,  (9) 
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downstream-travelling wave as it impinges on the plate, the phase difference between 
the two waves should be equal to  zero there, i.e. 

v = 0 a t  5 = t,, 
where ts is the position vector of an apparent sound source on the plate. Substituting 
in (8), one obtains 

vc = IK1(xo+Kz.4.9 " = IK,l(x-xo)+K2.(5s-5). ( 10) 

The pressure in (8) can be written in the simple form 

P ( k 5 )  = Aa+BP, 
where the coefficients A and B are functions of the position and represent the ampli- 
tudes of the two waves a and p. 

The correlation between pressure signals at the points xi and xi in the near field is 

Substituting from (1 l), one gets 

The above equation shows that the correlation Ri,Jr) of two signals, each of which is 
the sum of two stationary components, is the algebraic slim of the individual com- 
ponent correlations. The correlations of these components give the four correlation 
time delays in (5) according to the following sequence: 
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